cip system

The CIP System – Within the F&B Industry

In food manufacturing, cleaning-in-place or the CIP system is a standard component for ensuring reliable and efficient adherence to quality standards. The requirements placed on sensors, used for process control, are particularly high in the food and beverage industry.  They are tailored solutions for optimizing the CIP process, using turbidity and conductivity sensors.

What is involved?

The CIP system consists of numerous interlinked steps. Plant operators need to take into account more than just the downtime of the system. Costs also arise from the consumption of water, chemicals and energy, as well as product loss.

The sequence of the individual cleaning cycles is often still time-controlled. These fixed cleaning intervals will guarantee that the system is always cleaned properly.  However, more water, and cleaning solution and time, may be consumed than would actually be necessary for the medium being processed.

What is the solution?

The solution is to automate control of the CIP system using turbidity and conductivity sensors. The average water consumption, depending on the product, is 1.5 to 3 liters per processed liter of product.  Half of this water is used for cleaning the system.

Are there disadvantages?

A disadvantage of cleaning processes with fixed time intervals is that the maximum required cleaning duration must be used for each cleaning cycle. For example, the removal time for pasty media is considerably longer than for less viscous products. Therefore, when performing CIP cleaning after producing media with less viscosity, more water is used than is necessary.

This, however, can be remedied through automated process control using the turbidity and conductivity sensors. Water consumption at large F&B manufacturing plants can be lowered from an average of 6,500 to 2,500 liters per cleaning cycle simply by deploying an intelligent phase detection system. This will result in savings of water and wastewater costs.

In addition, shorter cleaning cycles lead to a lower consumption of acids and bases.  The use of chemicals can be precisely controlled by measuring their concentrations using the conductivity sensor, allowing their consumption to be further optimized.

What are the production-related stats?

Experience has shown that production-related losses reach 0.5% in large operations and 2.5% in small operations. It is particularly the plants with low levels of automation that experience significant losses in product.

The precise and rapid detection of water-to-product phases using the turbidity sensor lead to reductions in product losses of 5–10% in customer field projects. A CIP system usually takes 60–90 minutes. A hygienic design of the entire system is therefore an important contributor to shortening the cleaning cycles and increasing the efficiency and productivity of the process.

How can Morton Controls help?

As a specialist for sensor systems in hygienic processes, we, at Morton Controls, have sensors and process connections that are optimally designed for the demanding requirements of the F&B industry and that ensure reliable and efficient cleaning of the system.

 

 

 

 


 

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *