Posts

ANDERSON-NEGELE’S NEW P41 PRESSURE SENSOR

Morton Controls introduces Anderson-Negele’s new P41 pressure sensor with temperature compensation providing a quality, robust and cost-effective pressure and level measurement solution.

Pressure sensors for levAnderson-Negele P41 Pressure Sensor el measurement

Anderson-Negele’s new P41 pressure sensor compliments the range of pressure sensors from Anderson-Negele being the D3, L3, LAR, DAN-HH, PFS and P41. With our comprehensive range of sensors based on various measuring methods, you can be assured of a measuring instrument, for process pressure and level measurement, that is precisely tailored to your application.

Robust, needs-based, cost-effective

Despite its compact appearance, Anderson-Negele’s new P41 pressure sensor is designed to meet the high demand of process requirements: Pressure up to 40 bar, overpressure resistant up to 100 bar, vacuum resistant. The measuring range can be individually adapted to the desired process pressures and a choice can be made between absolute and relative measuring cells. Compound measurement is also possible, that means that the relative measuring cell can also be used to measure the vacuum range.

The P41 is robust when it comes to temperatures: up to 125 °C as standard, up to 150 °C / 60 min for CIP/SIP cleaning, and even up to 250 °C permanently with optional cooling section. The entire sensor, including the diaphragm, is made of stainless steel for excellent cleanability and durability. The P41 is versatile in terms of process connections and offers, in addition to the hygienic thread “G1” with CLEANadapt, further connections according to DIN 3852 in “G1/2” and “G1”, as well as Tri-Clamp and Varivent.

The complete rugged process sensor system from a single source

Morton Controls in conjunction with Anderson-Negele offer an extensive range of sensors to make all fluid processing application efficient and reliable.  With temperature, pressure, filling level, limit level, flow measurement and monitoring along with conductivity and turbidity. Measuring methods are adapted to the special requirements for the demands of process industry, due to their innovative products that are specifically designed for sanitary and hygienic sensitive areas. Solutions based and customer-oriented approach, Anderson-Negele has become synonymous with quality and efficiency in the food, beverage and life sciences industries.

We are pleased to bring Anderson-Negele’s new P41 pressure sensor to our clients.

Contact us today if you would like to find out more.

 

suspended solid sensors

SUSPENDED SOLID SENSORS – GET BETTER CONTROL

For better control over your suspended solids, we recommend Quadbeam’s S-range of suspended solid sensors, both for hygienic and immersion capabilities.

In addition, you will realise cost savings, a reduction in losses, and higher concentration control, in a repeated and accurate manner.

 

THE MAIN FEATURES OF THE S-RANGE SUSPENDED SOLID SENSORS

  1. Because of the 4-beam self-compensating sensor, drifting is eliminated and therefore electronics aging and contamination is done away with
  2. You have one-piece piece casing and therefore no leakage in the lenses – completely glass-free
  3. These sensors are reliable, repeatable and accurate

Quadbeam offers a number of models in their suspended solid sensors, namely:

Under Hygienic –

– S10-3HY

– S10HT-3HY

– S10-2HY

– S20-3HY

– S40-3HY

And, under Immersion:

– S10-IMM

– S20 -IMM

– S40-IMM

And, under Variline:

– S20-VN

– S40-VN

 

The measurement range of the S-range sensors are impressive:

– 0 – 25g/L in normal activated sludge (immersion)

– 0 – 40% milk fat (hygienic)

All dependent on the media and particle size

 

THE VARIOUS APPLICATIONS:

Quadbeam’s S range covers a wide area of applications, namely, mining, waste water, pulp and paper, dairy, and food and beverage.

For industrial applications, they are able to deal with the activated sludge measurement for return and waste. In the food, beverage and dairy arena, the monitoring of high levels of suspended solids is a popular application.

 

For hygienic applications:

– the product to water interface

– monitoring on fruit pulp

– concentration control of solids

– concentration of milk fat

 

For immersion applications:

digested and thickened sludge to clarifiers

– measurements of waste and return sludge

– filter, gravity and centrifugal

 

Should you be wanting to explore these range of sensors, we urge you to make contact with us and we will arrange a demo at your convenience.

sensors

Precise Measurement with Sensotech’s Liquisonic Sensors

For a more precise and quicker measurement of concentration and density, look no further than the Sensotech Liquisonic Sensors.

 

In particular Sensotech have had much success in the many sectors from chemical to the  brewing industry. While they use a standard system, there is also fine-tuning to customise the solution to the specific food industry specifications and hygienic requirements.

 

INSTALL AND FORGET

It is rare in an industry, where keeping tabs is the norm, to find a company that promotes walking away and letting the system manage the process alone. And that really is the case here! Sensotech’s Liquisonic sensors are that in tune, that once they have been set up correctly, they will monitor continuously.

 

Multiple signals are sent out every second and combined into one compensated signal. The temperature of the medium and the drifts are taken into account during single measurements. No matter what is happening with the conductivity and colour of the medium, the measurements continue. They are also resistant to pressure shocks.

 

The Liquisonic sensors are manufactured to be maintenance and drift-free for a period of 15-20 years. If you were concerned about drift in measurement before, no need to with SenorTech.

 

WHAT IS THE UNIQUE CONCEPT BEHIND THESE SENSORS?

sensors

The fast reaction time of these sensors using absolute sonic velocity as a well-defined and retraceable physical value means phase separation is quicker than before, with more accuracy. You are getting a reproducible physical signal that is quite unique handling temperature rangers of  up to 180 °C or 200 °C and can be use in explosion areas as well.  Solid rugged sensors for a precise and fast density and concentration measurement using absolute sonic velocity as a well-defined and retraceable physical value.

The positioning of the Liquisonic sensors is key in the application, be it in the main vessel or piping. The sensors are available to suit your process connections, such as tri-clamps, varivents or flanged.

The electronics can be housed inside a enclosures form polyester to stainless steel casing (IP 69) or in an existing cabinet.

 

THE STORAGE OF DATA

 

The Sensotech  controller can have up to four sensors connected for management of up to 32 (optional 99) products with an output of concentration and temperature, trend chart for a fast process course overview with  simple parameterization, e.g. of periphery analog and digital outputs, fieldbus, and Ethernet. It has a automatic self-monitoring function with a simple installation und intuitive operation for recording of events, e.g. exceeding of thresholds or change of product plus long-term memory of measuring results and user management with authorization levels. Remote operation via browser (PC, tablet, etc.)standard is to provide data storage that is situated internally as well as a card slot this way you can store the measurements for longer periods of time.

 

LET’S TALK APPLICATIONS

 

There are many variations and applications where the Liquisonic sensors can be applied. Namely:

 

Phase Interface Detection

Gas Scrubber Control

Concentration & Density Measurement

Refrigeration Cycle Monitoring

Evaporator

Neutralization

Incoming Goods Control

Bath Monitoring

Polymerization Monitoring

Solids control in pulp and paper (green, red and black liquor)

 

D3_1-Remote-Flush-Mount-Short_F-Trans

D3 Differential Pressure & Level Transmittor

Focusing on the Food, Beverage, Dairy and Life Sciences industry, we bring you Anderson-Negele’s D3 Differential Pressure and Level Transmittor.

Using the Modular Platform of Anderson-Negele sensors and the technology of L3 it has a parallel display of differential pressure and head or system pressure in the display and two mA output interfaces. The electronics using digital signalling to avoid negative impact of temperature changes reduces the effects of process and ambient temperature changes quite significantly. One of the elements we like about the D3 is that it comes ready to use out-of-the-box and the simple setup and programming is just that – simple.  You can mount the D3 transmittor display direct or you can mount the two sensors remotely and insuring a reliable remote wire cabling.

Take a look at some of the applications where this transmittor has worked well.

THE RANGE OF APPLICATIONS FOR THE D3 DIFFERENTIAL PRESSURE AND LEVEL TRANSMITTOR

 

  • In yoghurt culture vessels for Level monitoring
  • In fermentation vessels for Level monitoring
  • In Mashtuns for grain bed monitoring
  • Across membranes for pressure drop measurement

WHAT ARE THE MAIN FEATURES?

 

As mentioned, the setup couldn’t be easier with the user interface display.  You are provided with two analogue outputs, the top or bottom pressure and the differential pressure output.  In addition, the temperature compensation which will minimise any errors in extreme temperature changing applications plus simple and reliable remote wire cable avoid frequent recalibration

 

Should there be a need to replace or repair components, this can be done in the field with ease and no interruption to the work process as there are no capillary issues!  On inputting the product and tank information, you will receive accurate mass and volume output due to the integrated tank tables.  The patented dual o-ring seals give you IP69K ingress protection and you can look forward to the dual loop output provided by the Hart 7.0 graphical and communication LCD display.

 

WHAT IS THE MEASURING PRINCIPAL OF THE D3 DIFFERENTIAL PRESSURE AND LEVEL TRANSMITTOR

 

In the D3 system, each sensor uses an internal piezo-electric signal converter and a temperature sensor to measure the pressure and temperature of the capillary fill.  The electrical signal of the pressure converter and the resistance of the temperature sensor are measured and converted to a compensated pressure value in the pressure fitting. Both signals are transferred digitally to the head. They are then output in a standardized 4…20 mA and HART 7.0 signal for the differential pressure and in a 4…20 mA signal for the top or total pressure.

 

Where you have level applications that have pressure and/or vacuum conditions, we highly recommend the D3 Differential Pressure and Level Transmittor from Anderson-Negele.

Quadbeam

Focus on Quadbeam’s Suspended Solids Sensors

For excellent heat and chemical resistance, Quadbeam offers a range of products handling temperatures up to 105°C (221°F).  Their suspended solids sensors offer many advantages.

To control losses and product changes to increase yields, the use of Quadbeam’s senors are a must.

 

S10The S10

First, we take a look at the S10 Immersion and Hygienic sensors.

The S10 comes in 4 models, namely:

  • HYGIENIC: S10-3HY
  • HYGIENIC: S10HT-3HY
  • HYGIENIC: S10-2HY
  • IMMERSION: S10-IMM

The measurement range for Milk Fat is from 0 to 40% and for normal activated sludge, 0 to 25g/L.  Dependent on the media and particle size, the measuring range will vary.

What are the applications?

  • For the Dairy and Food & Beverage you can monitor high levels of suspended solids
  • Within the Waste, Mining and Industrial industries, we can include Return and Waste Activated Sludge Measurement. In addition, thickened and digested sludge to clarifiers is available. Centrifugal gravity or filter separation processes is part of the process.

 

The S20S20

The S20 comes in 3 models, namely:

  • IMMERSION: S20-IMM
  • HYGIENIC: S20-3HY
  • VARINLINE®: S20-VN

The measurement range for normal activated sludge is 0 to 10g/L and for Milk Fat is 0 to 20%%.  Again, the measuring range will vary dependent on the media and particle size.

What are the applications?

  • The Dairy and Food & Beverage industries have a wide range of applications available, including those dealing with Milk Fat, Solids in Fruit and Vegetable Juice, Process Control, and Product Loss Monitoring
  • The Waste water, Mining and Industrial applications include Mixed Liquor Suspended Solids, Clarifier control, Return Activated Sludge and Sludge Blanket Detection.

 

S40The S40

The S40 offers you three models as well:

  • IMMERSION: S40-IMM
  • HYGIENIC: S40-3HY
  • VARINLINE®: S40-VN

The measurement range is 0 to 1.5% for Milk fat (Hygienic and Varinline®), 0 to 2.5g/L in normal activated sludge (Immersion). The measuring range will vary according to media and particle size

What are the applications?

  • Dairy and Food & Beveragefor a wide range of applications where low levels of solids need to be monitored including, namely Milk Fat, Solids in Fruit and Vegetable Juice, Filter Monitoring, Heat Exchange Breakthrough Monitoring, CIP Chemical Monitoring and Separation Control
  • Waste, Mining and Industrialapplications include Raw Water Inlet, Effluent monitoring in clarifier overflow weirs, and Final Effluent Monitoring.

 

All are available in immersion and hygienic designs.  The S range from Quadbeam is perfectly flexible.

 

 

 

 

ITM-51

ITM-51 | Flexible & advanced Analytical Turbidity Meter

Anderson-Negele’s ITM-51 replaces the ITM-3, and it has a more flexible and advanced Analytical Turbidity Meter.

One can use this turbidity meter in a wider range of applications and expect a better performance overall.  The ITM-51 brings value by reducing water usage, use of chemicals and energy, and optimising product losses.

 

What are the top Applications?

  • Phase separation of products such as whey, cream and milk
  • Monitoring separator which has plant protection at the inlet and quality assurance at the outlet
  • CIP return flow which monitors the pre-rinse water for product remnants
  • Checking of yeast harvest for the brewery industry
  • Quality control at all levels
  • Monitoring of filters and seals for leakage

 

What are the advancements from the ITM-3?

 

  • Expanded measurement range
  • Increased temperature and pressure ranges
  • Further comprehensive options for configuration and process integration on Anderson-Negele’s modular sensor platform
  • The sensor can be checked by users directly on location with the help of an external test kit
  • More flexible with a modular structure and standardized components and many process connections
  • Easy to clean in automated CP processes due to its front-flush, hygienic design
  • Checked thoroughly through EHEDG tests with regards to its hygienic design
  • Increased ROI resultsITM-51

 

What are the accessories and additional options?

 

  • A pre-assembled cable for M12 plug-in connector
  • Remote version with cable length up to 30m
  • Electrical connection with M12 plug-in connector
  • Display module Simple User Interface (SUI) and Large User Interface (LUI)

ITM-51

 

What is the Measuring Principal of the Relative Turbidity Meter?

 

An infrared diode infrared light is irradiated into the media.  Particles in the media are reflected by the irradiated light, which in turn is detected by the receiver diode (the backscatter principle).

From the received signal, the electronics will calculate the relative turbidity of the media.  The relative turbidity is based on Anderson-Negele’s calibration standard and is displayed in “%TU”.

 

wine industry

Case Study: Anderson-Negele and Rotkäppchen-Mumm Sektkellereien

A practical application was undertaken of conductivity measurement during tartar stabilization in wineries.  Anderson-Negele’s conductivity meters for process control during tartar stabilization at Rotkäppchen-Mumm Sektkellereien GmbH proved successful.  We have the full story right here.

Rotkappchen-Mumm Sektkellereien, located in Freyburg at the Unstrut in Saxony-Anhalt in Germany, looks back on a long and eventful history of 150 years.

The company, founded in 1856, succeeded in integrating itself in the free market economy after the German reunification. In 1993, five managing employees, together with the Harald Eckes-Chantre family, took over the sparkling wine producer from the trust by means of a management buyout.  By 2001, Rotkäppchen-Mumm Sektkellerein was the market leader in sparkling wines.

Its highly successful marketing strategy made it possible for the company to continuously expand its market share and to become the leading sparkling wine label in the region. Today, the company produces sparkling wines, still wines and spirits at 5 different locations. In Freyburg alone, around 150,000 bottles are filled every day.

To control the wine stabilization process, Rotkäppchen-Mumm uses ILM conductivity meters from NEGELE.

Tartar refers to calcium salt (calcium tartrate) or potassium salt (potassium hydrogen tartrate), both of which can occur through the combination of tartaric acid with calcium or potassium.  While this may be tolerable in still wines as an indicator of a high mineral content, the “wine diamonds” are undesirable in sparkling wines.  Apart from visible quality impairments, the crystals in this case lead to “gushing”, the uncontrolled, profuse overflowing of foam when a bottle is uncorked.  In addition to the concentrations of tartaric acid, potassium and calcium as well as the pH level and the alcohol content, temperature also plays an important role in the crystallization process. The lower the temperature, the lower the solubility – and a lower solubility leads to the precipitation of tartar. Therefore, one of the ways to stabilize wine is to accelerate crystallization through cooling and the addition of tartar crystals, which act as crystal seeds and promote the precipitation of tartar (so-called contact method).

anderson-negele 

Application of cold/contact method at the Rotkäppchen-Mumm Sektkellerei

At the winery, tartar crystals are added to sparkling wine that has been cooled to approx. -1 °C (stabilization temperature) in a reaction tank (contact tartar). These contact crystals combine with the dissolved potassium or calcium salts in the reaction tank at temperatures close to freezing

The conductivity of the unfinished sparkling wine is affected by the presence of tartar. As tartar crystallizes out, the number of free ions in the sparkling wine goes down, reducing its electrical conductivity (measured in millisiemens) until no more crystals are formed

The conductivity in the reaction tanks is continuously monitored with the ITM inductive conductivity meters from ANDERSON-NEGELE via a bypass.  Once the crystallization process is completed, the conductivity stops dropping and the sparkling wine is “wine stabilized”. Experience has shown that this process takes 3-4 hours.  Subsequently, the (heavy) crystals are separated from the “tartar stabilized” sparkling wine using a Venturi centrifuge (hydrocyclone) before the sparkling wine is fed to a plate separator for further processing.

The conductivity of the unfinished sparkling wine is a measure of the tartar content and thus a decisive process parameter in meeting the high quality requirements for the products of Rotkappchen-Mumm Sektkellereien GmbH.

We are pleased that RotkäppchenMumm Sektkellereien GmbH trusts in the measuring devices of Anderson-Negele to meet their high quality standards.

 

 

 

 

 

sensotech emergency vent scrubber

The Emergency Vent Scrubber – why it’s important to monitor

WHY THE EMERGENCY VENT SCRUBBER

Within the chemical industry, it is important to get rid of environmentally hazardous or toxic gases and vapours.  And, this is where the Emergency Vent Scrubber comes into play.

Typical gasses and vapours that are removed are chlorine, bromine, phosgene, sulfur dioxide, NOx, HF and ammonia.

emergency vent scrubber

HOW DOES IT WORK?

The scrubbing liquid of an emergency vent scrubber circulates and is continually in contact with the gas stream to be cleaned. If toxic or environmentally hazardous chemicals are included in this stream, they will be absorbed.

SensoTech inline analyzers are often used to moni­tor the scrubbing liquid, which improves the system stability and quality.

The LiquiSonic® 40 analyzer allows the concentration measurement of 3-components-liquids (normally the scrubbing liquid, the concentration of NaOH and salts (NaCl and Na2CO3).  This is due to the parallel detection of two physical quantities, such as sonic velocity and conductivity.  The process is very sensitive.  If the NaOH content is under limit, it must be re-dosed. In case of too high salt content, the salt must be removed from the circulation stream, to prevent crystallization in the system and blocked nozzles.

emergency vent scrubber

WHAT IS THE CUSTOMER VALUE COMPONENT?

Because Sensotech’s LiquiSonic® analyzer provides a precise inline concentration measurement with real-time monitoring, they are able to provide true accuracy.

In addition, because of the automatic control, a sufficient level of scrubbing liquid is kept, which then keeps the scrubber at its perfect absorption efficiency.

There is a substantial reduction in labour costs, time saving of at least 1 day, and of course a saving on material use.

 

INSTALLATION PROCESS?

Installation is a breeze.

The LiquiSonic® immersion sensor is easily installed directly into pipelines. A typical installation point, combined with a conductivity meter, are DN 80 pipe­lines from the scrubber to the regeneration tank.

The robust sensor construction and the optional spe­cial materials, like HC2000, promote long process life.

The LiquiSonic® controller 40 is connected to the LiquiSonic® ultrasonic sensor as well as the device for the second physical value (conductivity meter). The cont­roller displays NaOH concentration and salt content.

 

For more on the Emergency Vent Scrubbers from #Sensotech, please make contact with us.

 

 

Quadbeam 4 beam

Four-beam technology from Quadbeam

As the engineer or plant manager, you need to ensure that you constantly reduce costs, improve efficiency and deliver excellent quality to your customers.

Quadbeam Technologies offers us the Four-Beam Technology where they can ensure your operations perform at the best they can.

 

What is the Four-Beam Technology all about?

The Four-Beam alternating light principal design is there to improve the reliability of your measurement of all optical suspended solids and turbidity instruments.

Very often most sensors won’t pick up what has caused an error if that cause is related to dirt or contamination on the sensor surface, or even because of ageing electronics.

This is because they are using a single-beam which is very limiting.  Quadbeam’s Four-Beam Technology ensures that all angles are taken into account throughout the process.

There is no drift with four beam sensors, whereas a single beam will drift a significant amount to make it an issue.

quadbeam 4-beam

So, how does Quadbeam differ from the other four-beam suppliers?

Quadbeam have not invented the four-beam process, but have most definitely improved upon it.  They are able to improve both reliability and performance, and isn’t that what you want?

 

Simple, but effective

With most things, having more than one is always better.  Essentially, Quadbeam Technologies have designed the alternating light principal, giving you two lights, and therefore two detectors.  They can compensate for the variations in both light intensity and detector sensitivity.  They do this via their ratio metric signalling system.  Two light sources are switched on and off alternatively and work with the two detectors simultaneously.

If you work in an industry where accuracy is paramount, get in touch with us at Morton Controls, and we will set you up with Quadbeam’s Four-Beam Technology.

 

uwt rotovino

Solutions with the Rotating Paddle Switch Rotovino

The Rotovino from UWT is a real All-Rounder!

For point level measurement within different processes, UWT can supply an extensive range of high quality rotary paddle switches.

  • Weighing
  • Storing
  • Dosing
  • Mixing
  • Cooling
  • Crushing
  • Packing

Dependent on your need, the Rotovino from UWT can be used for either full, demand or empty detector in storage silos and process vessels and is suitable for most solids.

Where extreme conditions are the norm, the electromechanical measuring principal can be adapted to accommodate.

What does the Rotovino protect against?

  • Overfill safety-device
  • Dry-run protection

 

What are the situations the Rotovino can provide solutions for?

  • Extreme process temperatures of -40°C and up to +1,100°C
  • Aggressive and abrasive media
  • Very light materials such as Styrofoam
  • Material prone to caking
  • Dusty environments
  • Explosive environments
  • Heavy mechanical loading
  • Electrostatic charging

 

What are the special features of the Rotovino from UWT?

  • The Universal Voltage Electronic
  • A Fail-safe alarm
  • A wide variety of configuration options
  • The Modular design
  • A very robust design
  • Variable extension lengths
  • Adjustable sensitivity (>15g/l)
  • And, private label design is possible

 

Safety first with UWT’s Rotating Paddle Switch Rotovino

UWT has ensured that they have International approvals for use in gas and dust hazardous areas.  Their RN 6000 is the world‘s first rotating level limit switch compliant to SIL 2.  And, in addition, they have encased it with a flameproof housing.

For more on the Rotovino from UWT, please make contact with Morton Controls today!