Posts

Agriculture, food, beverage & pharmaceutical – Clean in place (CIP) solutions

Project: CIP installation planning and construction

A complete sensor system for efficient certified and approved CIP cleaning for a prominent company specializing in the transport and logistics of liquid food.

The application

The CIP system consists of four tanks for freshwater, cleaning agents, returns and wastewater and the parallel cleaning system for up to three trucks. The independent process lines are designed for a fast, hygienic operation that is equally optimized in terms of ecological and economic aspects. From the tanks installed in the basement, cleaning media is pumped upwards into the milk or food trucks and flow back from there through hydrostatic pressure. In contrast to the otherwise frequently practiced “lost process “, the circulation and multiple recycling of the cleaning agents was a crucial requirement due to environmental protection and cost aspects.

The advantages of the application

  • Complete process sensor technology for reliable and sustainable CIP cleaning from a single source
  • Inline measurement of critical parameters enables precise process control and thus a verifiable quality for the certification of the cleaning
  • High measuring accuracy and short reaction times ensure resource efficiency (e.g. saving of cleaning agents, reduction of wastewater volume) a crucial requirement here due to environmental protection and cost aspects.

The CIP cleaning takes place in three stages:

1. Pre-rinsing with water from the return tank

2. CIP cleaning with 1-phase cleaner, then depending on concentration either recirculation into cleaning agent tank or discharge into return tank

3. Flushing with fresh water with discharge into the return tank

For reliable and certifiable cleaning and maximum utilization of the cleaning agents, temperature, conductivity and flow rate must correspond exactly to the specifications. These values are controlled permanently and with the utmost precision inline.

For all applications in the overall process, the Anderson-Negele sensors were able to offer the appropriate solution, thus ensuring optimum function, efficiency and process reliability for the customer.

The Solution

Different measuring methods ensure process reliability for the tanks. Capacitive level detectors NCS-M-11, installed at the top and bottom, transmit the full or empty signal to the PLC with the shortest reaction time in order to reliably prevent overflow during filling or pump idling. Type L3 pressure sensors are used for permanent volume measurement and to monitor the exact filling level. The temperature is continuously measured by dead-leg optimized TFP-161 sensors.

For correct cleaning, the media must always be pumped into the truck and their integrated spray heads with a specified, optimum pressure. Installed right after the pump, electromagnetic flow meters FMQ and pressure transmitters DANHH accurately monitor this process step. After the cleaning process, the media are analyzed inline and their return to the corresponding tanks is monitored by calorimetric flow switches of type FTS-141.

The analysis of the return media is one of the most important steps for an environmentally friendly and cost-efficient process. The ILM-4 inductive conductivity meter plays a central role in precisely determining the phase separation: during the discharge of the liquids at each cleaning stage the media are differentiated with cost-saving accuracy. Re-usable cleaning agent that flows off after cleaning can thus be returned to the tank to the maximum possible degree. In a separate, internal circulation and for permanent optimum cleaning result, its concentration is adapted to the specified ideal value by re-dosing with detergent and fresh water in the cleaning agent tank. The ILM-4 conductivity meter also ensures the highly precise measurement of conductivity and temperature required here.

ANDERSON-NEGELE SENSORS USED IN THE APPLICATION

Conductivity ILM-4   Process pressure DAN-HH Level/Volume L3
ADVANTAGES:
* Freely selectable outputs: conductivity, temperature, and concentration
* Rapid temperature response time: t90 approx. 15 s    
ADVANTAGES:
*Robust and durable * Housing completely resistant against cleaning chemicals * Rapid response time
ADVANTAGES: *High precision pressure and hydro-static level measurement *integrated tank *linearization and density compensation
Point level NCS-M-11   Flowmeter FMQ Temperature TFP-161
ADVANTAGES:
* Reliable switching
*Small installation length and good cleanability
*Measurement unaffected by the conductivity of the medium
ADVANTAGES: *Compact electronic device with stainless steel housing
* High measurement accuracy and reproducibility: ±0,5 % ±2 mm/s
ADVANTAGES: *Elastomer-free, hygienic      installation without dead legs
* Easy, fast installation, and calibration
Process pressure DAN-HH
Conductivity ILM-4
Conductivity
ILM-4
Level/Volume L3
Level/Volume L3
Hygienic limit switches for processes

Hygienic limit switches for processes

Hygienic limit switches for processes

February 2020 Maintenance, Test & Measurement, Calibration

Hygienic limit switches for processes

Process and storage vessels incorporate Hygienic limit switches to prevent overfilling of a tank or vessel (full indicator) or dry running of a pump (empty indicator). Anderson-Negele’s NCS series are ideally suited for the reliable measurement of limits in media with low water content, such as certain alcohols and cosmetics, providing universal application in bottling and pharmaceutical applications.

Capacitive working principle

Anderson-Negele level switches operate on the basis of the capacitive working principle. The measuring electrode, the medium and the conductive wall of the tank form an electrical capacitor influenced by three main factors: distance; area of the electrode surfaces; and type of medium between the electrodes.

The measuring electrode and the tank wall serve as the capacitor plates while the medium acts as the dielectric fluid. Due to the higher dielectric constant of the medium relative to air, the capacity increases when the electrode is immersed in the medium. Exposing the electrode has the opposite effect. The change in capacity is analysed by the level switch and converted to a corresponding switching command. The sensor outputs a 24 V DC signal (active output). The minimum and maximum (full/empty) switching functions can be swapped by reversing the polarity of the power supply. The capacitive working principle requires that the sensor tip, which is made of PEEK, be completely immersed in the medium. The advantage is that the sensor does not respond to foam or adherences and a signal is emitted only when the medium reaches the level. Capacitive measurement is most reliable when the dielectric conductivity and temperature of the medium are constant. Changes in the outer conditions are generally non-critical in media with high dielectric constant values.

Contact us for more information

High-speed level measurement

High-speed level measurement

High-speed level measurement

February 2020 Level Measurement & Control

Morton Controls in partnership with Anderson-Negele has introduced the innovative NSL-F High-speed level measurement sensor based on a modular device platform. The new platform strategy used with this sensor is based on a building-block principle that offers great flexibility in the assembly of individual sensor components.

Users benefit from the advantages of the system and profit from the reliability with which these sensors provide measurements, even in strongly adhesive and foaming media. For example, the device will accurately display that a tank is empty even in the presence of substantial foam. Due to the short response time, highly accurate metering processes can be reliably realised with the NSL-F – even with alternating and pasty media.

Anderson Negele’s specific Flex-Hybrid technology allows for easy operation of the sensor with either digital IO-Link or analog 4-20 mA technology, as well as in parallel with both interfaces. Other features include:

• Status control and sensor diagnosis for preventive maintenance and avoidance of production downtime.

• Interference-free plug-and-play technology with standard cable for time and cost-saving installation and commissioning.

• Uniform configuration for all sensors without the need for company-specific programming adaptors.

• Easy sensor replacement: automatic detection, configuration and parameterisation when plugged in.

Applications include continuous level monitoring in metallic vessels up to 3 m in height, level monitoring in feed vessels suited for adhesive and pasty media, level measurement in storage tanks of foaming media, and content measurement in pressurised vessels.

Contact us for more information

Reliable empty alarm in cosmetics tank

Reliable empty alarm in cosmetics tank

Economy and ecology in harmony through automatic monitoring of the filling line – Reliable empty alarm in cosmetics tank with NCS-L-12/18   

For over 60 years, the French brand Yves Rocher has been synonymous with high-quality cosmetics based on vegetable raw materials. The company is strongly committed to ecological issues and biodiversity. Even small factors such as the optimal use of raw materials play a role.

  1. The application

The filling systems for cosmetic creams were previously controlled manually. The filling level in the buffer tank had to be monitored by an employee and the filling process had to be stopped manually at the appropriate moment.

In order to prevent the filling pump from running dry, the process was stopped for safety reasons at an early stage, leaving important quantities of cream in the tank. This residual product was then disposed of, resulting in a significant loss of value.

Application advantages

  • Significantly lower product losses due to optimal emptying of the tank during filling
  • Precise measurement results despite high viscosity of the cream and corresponding adherences to the sensor probe
  • No manual control and monitoring required
  • Fast amortization through reduction of product losses and time savings for employees
  1. The solution

With the NCS-L level sensor, the filling process is automated. Due to its special sensor shape with 18 mm length and its measuring method with an extended measuring range, the NCS-L-12/18 is particularly suitable for low-water, viscous media such as oils, syrups or even cosmetic creams. Due to its inline integration in the outlet pipe of the filling system, the sensor signals safely and reliably as soon as the cream is depleted, thus stopping the filling process automatically.

  1. The result
  • Cream losses are minimized.
  • The quantities of waste to be disposed of (cream remaining in the tank) is reduced.
  • Impurities (splashes due to dry running of the filling pump) are avoided.
  • Maximum process reliability for the personnel operating the filling system
  1. Sensors used in the application

NCS-L-12/18                   NCS-01, NCS-M, NCS-L-31P

       4.1 Point level NCS-L-12/18

 Advantages:

  • Limit level detection even with media with low water content such as syrup, fruit concentrates, alcohols and oils with εr (Dk) ≥ 2
  • Reliable indication even with strongly adhesive media due to capacitive measuring principle
  • Very short response time

4.2 NCS-01, NCS-M, NCS-L-31P

Advantages:

  • Insensitive to foam and adhesions
  • Different sensor lengths for adaptation to all installation situations in pipes and vessels

 

 

 

 

Anderson-Negele provides application-specific hygienic Sensor solutions

Morton Controls in partnership with  Anderson-Negele provides application-specific hygienic sensor solutions and support for safe processing in the Food & Beverage and Pharmaceutical markets.

TFP-164

TFP-164 Flush Temperature Sensors – Temperature Measurement in vessels and pipes with flush Hygienic process fitting.

APPLICATIONS:

Applications include monitoring of temperature measurement in vessels with agitators and stirrers and in pipes where an inserted probe is not suitable.

FEATURES:

  • Product contacting materials compliant to FDA
  • Sensor completely made of stainless-steel resp. PEEK (front flush sensor)
  • Conforming to 3-A Sanitary Standard 74-06 for front flush sensors
  • Front flush mounting possible
  • Integrated transmitter optional
  • Different electrical connections available

P41


P41 Pressure Sensors – Pressure transmitter device for hygienic pressure monitoring for various applications in breweries, dairies and food & beverage industries.

APPLICATIONS:

Sanitary pressure measurement in pipes and tanks for process temperatures up to 250 °C for ranges from 0.2 to 40bar.

FEATURES:

  • Hygienic process connection with G1/2″ & G1” CLEANadapt
  • Rapid response time of < 10 ms
  • Vacuum-proof
  • Full stainless-steel body & easy installation
  • Electrical connection with M12 plug connection
  • Available with relative or absolute measurement cell
  • Built-in two-conductor measurement converter 4…20 mA

HM-E

HM-E Turbine Flow Sensors – Measurement of flow rate and volume in hygienic applications.

APPLICATIONS:

Designed for hygienic applications in food-, beverage- and pharmaceutical Industries e.g. Process water, demineralized water, aqueous media such as filtered fruit juice or beer, alcohols, light oils, saline solutions, cleaning agents, and acids.

FEATURES:

  • High quality and hygienic alternative to industrial, non-hygienic turbine, paddle wheel or variable area flowmeters
  • Economical alternative to mass flowmeters in non-conductive, low-viscosity media
  • Cost-effective and compact alternative to magnetic-inductive & Coriolis flowmeters
  • Hygienic design, confirmed by 3-A & FDA certification

NCS-M-12

NCS-M-12 Level Sensors – capacitive limit detection in metallic vessels and pipes with hygienic thread G1/2″ (CLEANadapt)

APPLICATIONS:

Limit detection of fluid also with low or no water content like syrup, fruit concentrates, alcohols and oils with a dielectric constant εr (Dk) ≥ 2

FEATURES:

  • Hygienic process connection with CLEANadapt
  • Conforming to 3-A Sanitary Standard
  • All wetted materials are FDA-conform
  • CIP- / SIP cleaning up to 143 °C / max. 120 minutes
  • Compact installation size
  • Capacitive measuring principle
  • Independent of the medium conductivity
  • Insensitive to foam and adherence
  • Very short response time (< 100 ms)

Anderson-Negele’s NCS-M Capacitive Level Sensor with the MPI-300 programming adapter

 

In combination with theMPI-300 USB programming adapter, the NCS-M sensor can be individually adapted to the application used by the customer. In addition to setting the device to the appropriate medium, switching threshold, hysteresis and time delay can also be individually configured.

 

Application examples of the capacitive level sensor:

  • Limit detection in vessels or pipes
  • Product monitoring in pipes
  • Pump/dry running protection
  • Detection of syrup and fruit concentrate

 

 

 

 MPI-300 USB programming adapter in combination with the NCS-M sensor

  1. NCS-M-12:
  • Version with enhanced measurement range for critical media (e.g. Oil, Fat)
  • No adjustment necessary
  • The switching threshold, hysteresis and time delay parameters can be set for the sensor for complex applications
  • Insensitive to foam and adherence
  • Very short response time (< 100 ms)
  • IP 69K

2. The MPI-300:

Adapter for the universal programming of the NCS-M capacitive level sensor family. Level detection even for media with a low or no water content such as syrup, fruit concentrate, alcohols and oils with a dielectric constant εr (Dk) ≥ 2.

The switching threshold, hysteresis and time delay parameters can be set for the sensor.

ANDERSON-NEGELE’S NEW P41 PRESSURE SENSOR

Morton Controls introduces Anderson-Negele’s new P41 pressure sensor with temperature compensation providing a quality, robust and cost-effective pressure and level measurement solution.

Pressure sensors for levAnderson-Negele P41 Pressure Sensor el measurement

Anderson-Negele’s new P41 pressure sensor compliments the range of pressure sensors from Anderson-Negele being the D3, L3, LAR, DAN-HH, PFS and P41. With our comprehensive range of sensors based on various measuring methods, you can be assured of a measuring instrument, for process pressure and level measurement, that is precisely tailored to your application.

Robust, needs-based, cost-effective

Despite its compact appearance, Anderson-Negele’s new P41 pressure sensor is designed to meet the high demand of process requirements: Pressure up to 40 bar, overpressure resistant up to 100 bar, vacuum resistant. The measuring range can be individually adapted to the desired process pressures and a choice can be made between absolute and relative measuring cells. Compound measurement is also possible, that means that the relative measuring cell can also be used to measure the vacuum range.

The P41 is robust when it comes to temperatures: up to 125 °C as standard, up to 150 °C / 60 min for CIP/SIP cleaning, and even up to 250 °C permanently with optional cooling section. The entire sensor, including the diaphragm, is made of stainless steel for excellent cleanability and durability. The P41 is versatile in terms of process connections and offers, in addition to the hygienic thread “G1” with CLEANadapt, further connections according to DIN 3852 in “G1/2” and “G1”, as well as Tri-Clamp and Varivent.

The complete rugged process sensor system from a single source

Morton Controls in conjunction with Anderson-Negele offer an extensive range of sensors to make all fluid processing application efficient and reliable.  With temperature, pressure, filling level, limit level, flow measurement and monitoring along with conductivity and turbidity. Measuring methods are adapted to the special requirements for the demands of process industry, due to their innovative products that are specifically designed for sanitary and hygienic sensitive areas. Solutions based and customer-oriented approach, Anderson-Negele has become synonymous with quality and efficiency in the food, beverage and life sciences industries.

We are pleased to bring Anderson-Negele’s new P41 pressure sensor to our clients.

Contact us today if you would like to find out more.

 

D3_1-Remote-Flush-Mount-Short_F-Trans

D3 Differential Pressure & Level Transmittor

Focusing on the Food, Beverage, Dairy and Life Sciences industry, we bring you Anderson-Negele’s D3 Differential Pressure and Level Transmittor.

Using the Modular Platform of Anderson-Negele sensors and the technology of L3 it has a parallel display of differential pressure and head or system pressure in the display and two mA output interfaces. The electronics using digital signalling to avoid negative impact of temperature changes reduces the effects of process and ambient temperature changes quite significantly. One of the elements we like about the D3 is that it comes ready to use out-of-the-box and the simple setup and programming is just that – simple.  You can mount the D3 transmittor display direct or you can mount the two sensors remotely and insuring a reliable remote wire cabling.

Take a look at some of the applications where this transmittor has worked well.

THE RANGE OF APPLICATIONS FOR THE D3 DIFFERENTIAL PRESSURE AND LEVEL TRANSMITTOR

 

  • In yoghurt culture vessels for Level monitoring
  • In fermentation vessels for Level monitoring
  • In Mashtuns for grain bed monitoring
  • Across membranes for pressure drop measurement

WHAT ARE THE MAIN FEATURES?

 

As mentioned, the setup couldn’t be easier with the user interface display.  You are provided with two analogue outputs, the top or bottom pressure and the differential pressure output.  In addition, the temperature compensation which will minimise any errors in extreme temperature changing applications plus simple and reliable remote wire cable avoid frequent recalibration

 

Should there be a need to replace or repair components, this can be done in the field with ease and no interruption to the work process as there are no capillary issues!  On inputting the product and tank information, you will receive accurate mass and volume output due to the integrated tank tables.  The patented dual o-ring seals give you IP69K ingress protection and you can look forward to the dual loop output provided by the Hart 7.0 graphical and communication LCD display.

 

WHAT IS THE MEASURING PRINCIPAL OF THE D3 DIFFERENTIAL PRESSURE AND LEVEL TRANSMITTOR

 

In the D3 system, each sensor uses an internal piezo-electric signal converter and a temperature sensor to measure the pressure and temperature of the capillary fill.  The electrical signal of the pressure converter and the resistance of the temperature sensor are measured and converted to a compensated pressure value in the pressure fitting. Both signals are transferred digitally to the head. They are then output in a standardized 4…20 mA and HART 7.0 signal for the differential pressure and in a 4…20 mA signal for the top or total pressure.

 

Where you have level applications that have pressure and/or vacuum conditions, we highly recommend the D3 Differential Pressure and Level Transmittor from Anderson-Negele.

ITM-51

ITM-51 | Flexible & advanced Analytical Turbidity Meter

Anderson-Negele’s ITM-51 replaces the ITM-3, and it has a more flexible and advanced Analytical Turbidity Meter.

One can use this turbidity meter in a wider range of applications and expect a better performance overall.  The ITM-51 brings value by reducing water usage, use of chemicals and energy, and optimising product losses.

 

What are the top Applications?

  • Phase separation of products such as whey, cream and milk
  • Monitoring separator which has plant protection at the inlet and quality assurance at the outlet
  • CIP return flow which monitors the pre-rinse water for product remnants
  • Checking of yeast harvest for the brewery industry
  • Quality control at all levels
  • Monitoring of filters and seals for leakage

 

What are the advancements from the ITM-3?

 

  • Expanded measurement range
  • Increased temperature and pressure ranges
  • Further comprehensive options for configuration and process integration on Anderson-Negele’s modular sensor platform
  • The sensor can be checked by users directly on location with the help of an external test kit
  • More flexible with a modular structure and standardized components and many process connections
  • Easy to clean in automated CP processes due to its front-flush, hygienic design
  • Checked thoroughly through EHEDG tests with regards to its hygienic design
  • Increased ROI resultsITM-51

 

What are the accessories and additional options?

 

  • A pre-assembled cable for M12 plug-in connector
  • Remote version with cable length up to 30m
  • Electrical connection with M12 plug-in connector
  • Display module Simple User Interface (SUI) and Large User Interface (LUI)

ITM-51

 

What is the Measuring Principal of the Relative Turbidity Meter?

 

An infrared diode infrared light is irradiated into the media.  Particles in the media are reflected by the irradiated light, which in turn is detected by the receiver diode (the backscatter principle).

From the received signal, the electronics will calculate the relative turbidity of the media.  The relative turbidity is based on Anderson-Negele’s calibration standard and is displayed in “%TU”.

 

wine industry

Case Study: Anderson-Negele and Rotkäppchen-Mumm Sektkellereien

A practical application was undertaken of conductivity measurement during tartar stabilization in wineries.  Anderson-Negele’s conductivity meters for process control during tartar stabilization at Rotkäppchen-Mumm Sektkellereien GmbH proved successful.  We have the full story right here.

Rotkappchen-Mumm Sektkellereien, located in Freyburg at the Unstrut in Saxony-Anhalt in Germany, looks back on a long and eventful history of 150 years.

The company, founded in 1856, succeeded in integrating itself in the free market economy after the German reunification. In 1993, five managing employees, together with the Harald Eckes-Chantre family, took over the sparkling wine producer from the trust by means of a management buyout.  By 2001, Rotkäppchen-Mumm Sektkellerein was the market leader in sparkling wines.

Its highly successful marketing strategy made it possible for the company to continuously expand its market share and to become the leading sparkling wine label in the region. Today, the company produces sparkling wines, still wines and spirits at 5 different locations. In Freyburg alone, around 150,000 bottles are filled every day.

To control the wine stabilization process, Rotkäppchen-Mumm uses ILM conductivity meters from NEGELE.

Tartar refers to calcium salt (calcium tartrate) or potassium salt (potassium hydrogen tartrate), both of which can occur through the combination of tartaric acid with calcium or potassium.  While this may be tolerable in still wines as an indicator of a high mineral content, the “wine diamonds” are undesirable in sparkling wines.  Apart from visible quality impairments, the crystals in this case lead to “gushing”, the uncontrolled, profuse overflowing of foam when a bottle is uncorked.  In addition to the concentrations of tartaric acid, potassium and calcium as well as the pH level and the alcohol content, temperature also plays an important role in the crystallization process. The lower the temperature, the lower the solubility – and a lower solubility leads to the precipitation of tartar. Therefore, one of the ways to stabilize wine is to accelerate crystallization through cooling and the addition of tartar crystals, which act as crystal seeds and promote the precipitation of tartar (so-called contact method).

anderson-negele 

Application of cold/contact method at the Rotkäppchen-Mumm Sektkellerei

At the winery, tartar crystals are added to sparkling wine that has been cooled to approx. -1 °C (stabilization temperature) in a reaction tank (contact tartar). These contact crystals combine with the dissolved potassium or calcium salts in the reaction tank at temperatures close to freezing

The conductivity of the unfinished sparkling wine is affected by the presence of tartar. As tartar crystallizes out, the number of free ions in the sparkling wine goes down, reducing its electrical conductivity (measured in millisiemens) until no more crystals are formed

The conductivity in the reaction tanks is continuously monitored with the ITM inductive conductivity meters from ANDERSON-NEGELE via a bypass.  Once the crystallization process is completed, the conductivity stops dropping and the sparkling wine is “wine stabilized”. Experience has shown that this process takes 3-4 hours.  Subsequently, the (heavy) crystals are separated from the “tartar stabilized” sparkling wine using a Venturi centrifuge (hydrocyclone) before the sparkling wine is fed to a plate separator for further processing.

The conductivity of the unfinished sparkling wine is a measure of the tartar content and thus a decisive process parameter in meeting the high quality requirements for the products of Rotkappchen-Mumm Sektkellereien GmbH.

We are pleased that RotkäppchenMumm Sektkellereien GmbH trusts in the measuring devices of Anderson-Negele to meet their high quality standards.